FISEVIER

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Physicochemical properties and sorption capacities of sawdust-based biochars and commercial activated carbons towards ethoxylated alkylphenols and their phenolic metabolites in effluent wastewater from a textile district

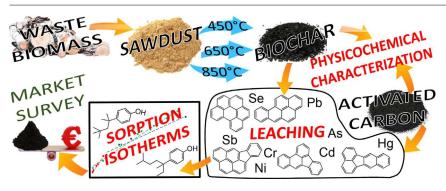
Massimo Del Bubba ^{a,*}, Beatrice Anichini ^b, Zaineb Bakari ^{a,c}, Maria Concetta Bruzzoniti ^d, Roberto Camisa ^e, Claudia Caprini ^a, Leonardo Checchini ^a, Donatella Fibbi ^e, Ayoub El Ghadraoui ^a, Francesca Liguori ^f, Serena Orlandini ^a

- ^a Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3 50019 Sesto Fiorentino, Florence, Italy
- ^b Publiacqua S.p.A., Via Villamagna 90/c 50126 Florence, Italy
- ^c National Engineering School of Sfax, Route de la Soukra km 4 3038 Sfax, Tunisia
- ^d Department of Chemistry, University of Turin, Via Pietro Giuria 5 10125 Turin, Italy
- e GIDA S.p.A., Via di Baciacavallo 36, 59100 Prato, Italy
- f Institute for the Chemistry of Organometallic Compounds, National Research Council (ICCOM-CNR), Via Madonna del Piano 10 50019 Sesto Fiorentino, Florence, Italy

HIGHLIGHTS

- Sorption by biochar of ethoxylated alkylphenols and alkylphenols was investigated.
- Biochars comply with the EN 12915-1/2009 limits for metal and PAH release in water.
- Biochar obtained at 650 °C (BC650) showed for most analytes the best sorptions.
- The best alkylphenol sorptions were 9–13 times lower in BC650 than activated carbon.
- A market survey showed biochar as cost-efficient compared to activated carbon.

ARTICLE INFO


Article history:
Received 3 September 2019
Received in revised form 18 October 2019
Accepted 24 October 2019
Available online 22 November 2019

Editor: Daniel CW Tsang

Keywords:
Porosimetry analyses
XPS
FTIR
Heavy-metal release

E-mail address: delbubba@unifi.it (M. Del Bubba).

$\mathsf{G}\ \mathsf{R}\ \mathsf{A}\ \mathsf{P}\ \mathsf{H}\ \mathsf{I}\ \mathsf{C}\ \mathsf{A}\ \mathsf{L}\ \mathsf{A}\ \mathsf{B}\ \mathsf{S}\ \mathsf{T}\ \mathsf{R}\ \mathsf{A}\ \mathsf{C}\ \mathsf{T}$

ABSTRACT

Three biochars were produced using sawdust from waste biomass, via a simple pyrolysis thermal conversion at 450, 650, and 850 °C (BC450, BC650, and BC850), without any activation process. These materials, together with vegetal and mineral commercial activated carbons (VAC and MAC), were characterized for their elemental composition, Brunauer–Emmett–Teller surface area, t-plot microporosity and Barrett–Joyner-Halenda mesoporosity. Moreover, iodine, phenol and methylene blue porosity indexes were measured. The materials were also evaluated for their pH of the point of zero charge, as well as near-surface chemical composition and surface functionality by means of X-ray photoelectron and Fourier-transform infrared spectroscopy. Ash content, water-extractable metals and polycyclic aromatic hydrocarbons (PAHs) were also determined. BC650 showed a much higher surface area (319 m² g $^{-1}$) compared to BC450 (102 m² g $^{-1}$), as well as an increase in aromatization and the residual presence of functional polar groups. BC850 exhibited a loss of polar and aromatic groups, with the dominance of graphitic carbon and the highest value of surface area (419 m² g $^{-1}$). Biochars comply with the EN 12915–1/2009 limits for

^{*} Corresponding author.